Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
New Phytol ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641748

ABSTRACT

Extreme droughts can have long-lasting effects on forest community dynamics and species interactions. Yet, our understanding of how drought legacy modulates ecological relationships is just unfolding. We tested the hypothesis that leaf chemistry and herbivory show long-term responses to premature defoliation caused by an extreme drought event in European beech (Fagus sylvatica L.). For two consecutive years after the extreme European summer drought in 2018, we collected leaves from the upper and lower canopy of adjacently growing drought-stressed and unstressed trees. Leaf chemistry was analyzed and leaf damage by different herbivore-feeding guilds was quantified. We found that drought had lasting impacts on leaf nutrients and on specialized metabolomic profiles. However, drought did not affect the primary metabolome. Drought-related phytochemical changes affected damage of leaf-chewing herbivores whereas damage caused by other herbivore-feeding guilds was largely unaffected. Drought legacy effects on phytochemistry and herbivory were often weaker than between-year or between-canopy strata variability. Our findings suggest that a single extreme drought event bears the potential to long-lastingly affect tree-herbivore interactions. Drought legacy effects likely become more important in modulating tree-herbivore interactions since drought frequency and severity are projected to globally increase in the coming decades.

2.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38519103

ABSTRACT

Deadwood provides habitat for fungi and serves diverse ecological functions in forests. We already have profound knowledge of fungal assembly processes, physiological and enzymatic activities, and resulting physico-chemical changes during deadwood decay. However, in situ detection and identification methods, fungal origins, and a mechanistic understanding of the main lignocellulolytic enzymes are lacking. This study used metaproteomics to detect the main extracellular lignocellulolytic enzymes in 12 tree species in a temperate forest that have decomposed for 8 ½ years. Mainly white-rot (and few brown-rot) Basidiomycota were identified as the main wood decomposers, with Armillaria as the dominant genus; additionally, several soft-rot xylariaceous Ascomycota were identified. The key enzymes involved in lignocellulolysis included manganese peroxidase, peroxide-producing alcohol oxidases, laccase, diverse glycoside hydrolases (cellulase, glucosidase, xylanase), esterases, and lytic polysaccharide monooxygenases. The fungal community and enzyme composition differed among the 12 tree species. Ascomycota species were more prevalent in angiosperm logs than in gymnosperm logs. Regarding lignocellulolysis as a function, the extracellular enzyme toolbox acted simultaneously and was interrelated (e.g. peroxidases and peroxide-producing enzymes were strongly correlated), highly functionally redundant, and present in all logs. In summary, our in situ study provides comprehensive and detailed insight into the enzymatic machinery of wood-inhabiting fungi in temperate tree species. These findings will allow us to relate changes in environmental factors to lignocellulolysis as an ecosystem function in the future.


Subject(s)
Ascomycota , Basidiomycota , Wood/microbiology , Ecosystem , Trees , Basidiomycota/physiology , Peroxides/metabolism , Fungi
3.
Nat Commun ; 15(1): 1921, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429327

ABSTRACT

Rising temperatures are leading to increased prevalence of warm-affinity species in ecosystems, known as thermophilisation. However, factors influencing variation in thermophilisation rates among taxa and ecosystems, particularly freshwater communities with high diversity and high population decline, remain unclear. We analysed compositional change over time in 7123 freshwater and 6201 terrestrial, mostly temperate communities from multiple taxonomic groups. Overall, temperature change was positively linked to thermophilisation in both realms. Extirpated species had lower thermal affinities in terrestrial communities but higher affinities in freshwater communities compared to those persisting over time. Temperature change's impact on thermophilisation varied with community body size, thermal niche breadth, species richness and baseline temperature; these interactive effects were idiosyncratic in the direction and magnitude of their impacts on thermophilisation, both across realms and taxonomic groups. While our findings emphasise the challenges in predicting the consequences of temperature change across communities, conservation strategies should consider these variable responses when attempting to mitigate climate-induced biodiversity loss.


Subject(s)
Biodiversity , Ecosystem , Animals , Body Size , Climate , Fresh Water
4.
J Anim Ecol ; 93(5): 540-553, 2024 May.
Article in English | MEDLINE | ID: mdl-38509643

ABSTRACT

Understanding how anthropogenic activities induce changes in the functional traits of arthropod communities is critical to assessing their ecological consequences. However, we largely lack comprehensive assessments of the long-term impact of global-change drivers on the trait composition of arthropod communities across a large number of species and sites. This knowledge gap critically hampers our ability to predict human-driven impacts on communities and ecosystems. Here, we use a dataset of 1.73 million individuals from 877 species to study how four functionally important traits of carabid beetles and spiders (i.e. body size, duration of activity period, tolerance to drought, and dispersal capacity) have changed at the community level across ~40 years in different types of land use and as a consequence of land use changes (that is, urbanisation and loss of woody vegetation) at the landscape scale in Switzerland. The results show that the mean body size in carabid communities declined in all types of land use, with particularly stronger declines in croplands compared to forests. Furthermore, the length of the activity period and the tolerance to drought of spider communities decreased in most land use types. The average body size of carabid communities in landscapes with increased urbanisation in the last ~40 years tended to decrease. However, the length of the activity period, the tolerance to drought, and the dispersal capacity did not change significantly. Furthermore, urbanisation promoted increases in the average dispersal capacities of spider communities. Additionally, urbanisation favoured spider communities with larger body sizes and longer activity periods. The loss of woody areas at the landscape level was associated with trait shifts to carabid communities with larger body sizes, shorter activity periods, higher drought tolerances and strongly decreased dispersal capacities. Decreases in activity periods and dispersal capacities were also found in spider communities. Our study demonstrates that human-induced changes in land use alter key functional traits of carabid and spider communities in the long term. The detected trait shifts in arthropod communities likely have important consequences for their functional roles in ecosystems.


Subject(s)
Spiders , Animals , Spiders/physiology , Switzerland , Coleoptera/physiology , Body Size , Urbanization , Ecosystem , Droughts , Arthropods/physiology , Forests
5.
Nat Commun ; 15(1): 1251, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341437

ABSTRACT

Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a 'slow-fast' axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that 'slow' and 'fast' strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.


Subject(s)
Biodiversity , Ecosystem , Biomass , Agriculture , Soil
6.
Ecol Evol ; 14(2): e10928, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38371870

ABSTRACT

Global warming is affecting the phenological cycles of plants and animals, altering the complex synchronization that has co-evolved over thousands of years between interacting species and trophic levels. Here, we examined how warmer winter conditions affect the timing of budburst in six common European trees and the hatching of a generalist leaf-feeding insect, the spongy moth Lymantria dispar, whose fitness depends on the synchrony between egg hatch and leaf emergence of the host tree. We applied four different temperature treatments to L. dispar eggs and twig cuttings, that mimicked warmer winters and reduced chilling temperatures that are necessary for insect diapause and bud dormancy release, using heated open-top chambers (ambient or +3.5°C), and heated greenhouses (maintained at >6°C or >10°C). In addition, we conducted preference and performance tests to determine which tree species the larvae prefer and benefit from the most. Budburst success and twig survival were highest for all tree species at ambient temperature conditions, whereas it declined under elevated winter temperature for Tilia cordata and Acer pseudoplatanus, likely due to a lack of chilling. While L. dispar egg hatch coincided with budburst in most tree species within 10 days under ambient conditions, it coincided with budburst only in Quercus robur, Carpinus betulus, and, to a lesser extent, Ulmus glabra under warmer conditions. With further warming, we, therefore, expect an increasing mismatch in trees with high chilling requirements, such as Fagus sylvatica and A. pseudoplatanus, but still good synchronization with trees having low chilling requirements, such as Q. robur and C. betulus. Surprisingly, first instar larvae preferred and gained weight faster when fed with leaves of F. sylvatica, while Q. robur ranked second. Our results suggest that spongy moth outbreaks are likely to persist in oak and hornbeam forests in western and central Europe.

7.
Sci Data ; 10(1): 680, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798274

ABSTRACT

European ash, Fraxinus excelsior is facing the double threat of ongoing devastation by the invasive fungal pathogen, Hymenoscyphus fraxineus and the imminent arrival of the non-native emerald ash borer (EAB), Agrilus planipennis. The spread of EAB which is currently moving westwards from European Russia and Ukraine into central Europe, poses an additional substantial threat to European ash, F. excelsior. While the molecular basis for resistance or variation in resistance among European ash genotypes is heavily investigated, comparatively little is known about the molecular ash traits involved in resistance against EAB. In this study we have gathered transcriptomic data from EAB inoculated genotypes of F. excelsior that have previously shown different levels of susceptibility to EAB. Resultant datasets show differential gene expression in susceptible and resistant genotypes in response to EAB infestation. This data will provide important information on the molecular basis of resistance to the EAB and allow the development of management plans to combat a pending threat of a culturally and ecologically important European tree species.


Subject(s)
Coleoptera , Fraxinus , Transcriptome , Animals , Fraxinus/genetics , Gene Expression Profiling , Genotype
8.
Sci Rep ; 13(1): 11570, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463904

ABSTRACT

Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.


Subject(s)
Ecosystem , Mycobiome , Animals , Humans , Phylogeny , Forests , Geography , Climate Change , Insecta
9.
Trends Ecol Evol ; 38(9): 788-791, 2023 09.
Article in English | MEDLINE | ID: mdl-37331912

ABSTRACT

Loss of insect biodiversity is widespread, and in forests habitat loss is one of the major drivers responsible. Integrative forest management must consider the preservation and promotion of key habitat features that provide essential microhabitats and resources to conserve biodiversity alongside ecosystem functions and services.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Forests , Biodiversity , Insecta
10.
New Phytol ; 240(3): 1219-1232, 2023 11.
Article in English | MEDLINE | ID: mdl-37345294

ABSTRACT

Plants rely on cross-resistance traits to defend against multiple, phylogenetically distinct enemies. These traits are often the result of long co-evolutionary histories. Biological invasions can force naïve plants to cope with novel, coincident pests, and pathogens. For example, European ash (Fraxinus excelsior) is substantially threatened by the emerald ash borer (EAB), Agrilus planipennis, a wood-boring beetle, and the ash dieback (ADB) pathogen, Hymenoscyphus fraxineus. Yet, plant cross-resistance traits against novel enemies are poorly explored and it is unknown whether naïve ash trees can defend against novel enemy complexes via cross-resistance mechanisms. To gain mechanistic insights, we quantified EAB performance on grafted replicates of ash genotypes varying in ADB resistance and characterized ash phloem chemistry with targeted and untargeted metabolomics. Emerald ash borer performed better on ADB-susceptible than on ADB-resistant genotypes. Moreover, changes in EAB performance aligned with differences in phloem chemical profiles between ADB-susceptible and ADB-resistant genotypes. We show that intraspecific variation in phloem chemistry in European ash can confer increased cross-resistance to invasive antagonists from different taxonomic kingdoms. Our study suggests that promotion of ADB-resistant ash genotypes may simultaneously help to control the ADB disease and reduce EAB-caused ash losses, which may be critical for the long-term stability of this keystone tree species.


Subject(s)
Coleoptera , Fraxinus , Animals , Fraxinus/genetics , Metabolomics , Genotype , Larva
11.
Ecol Lett ; 26(7): 1157-1173, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37156097

ABSTRACT

The species-energy hypothesis predicts increasing biodiversity with increasing energy in ecosystems. Proxies for energy availability are often grouped into ambient energy (i.e., solar radiation) and substrate energy (i.e., non-structural carbohydrates or nutritional content). The relative importance of substrate energy is thought to decrease with increasing trophic level from primary consumers to predators, with reciprocal effects of ambient energy. Yet, empirical tests are lacking. We compiled data on 332,557 deadwood-inhabiting beetles of 901 species reared from wood of 49 tree species across Europe. Using host-phylogeny-controlled models, we show that the relative importance of substrate energy versus ambient energy decreases with increasing trophic levels: the diversity of zoophagous and mycetophagous beetles was determined by ambient energy, while non-structural carbohydrate content in woody tissues determined that of xylophagous beetles. Our study thus overall supports the species-energy hypothesis and specifies that the relative importance of ambient temperature increases with increasing trophic level with opposite effects for substrate energy.


Subject(s)
Coleoptera , Ecosystem , Animals , Trees , Wood , Biodiversity , Europe
12.
Funct Ecol ; 37(1): 150-161, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37064507

ABSTRACT

Climate, topography and the 3D structure of forests are major drivers affecting local species communities. However, little is known about how the specific functional traits of saproxylic (wood-living) beetles, involved in the recycling of wood, might be affected by those environmental characteristics.Here, we combine ecological and morphological traits available for saproxylic beetles and airborne laser scanning (ALS) data in Bayesian trait-based joint species distribution models to study how traits drive the distributions of more than 230 species in temperate forests of Europe.We found that elevation (as a proxy for temperature and precipitation) and the proportion of conifers played important roles in species occurrences while variables related to habitat heterogeneity and forest complexity were less relevant. Furthermore, we showed that local communities were shaped by environmental variation primarily through their ecological traits whereas morphological traits were involved only marginally. As predicted, ecological traits influenced species' responses to forest structure, and to other environmental variation, with canopy niche, wood decay niche and host preference as the most important ecological traits. Conversely, no links between morphological traits and environmental characteristics were observed. Both models, however, revealed strong phylogenetic signal in species' response to environmental characteristics.These findings imply that alterations of climate and tree species composition have the potential to alter saproxylic beetle communities in temperate forests. Additionally, ecological traits help explain species' responses to environmental characteristics and thus should prove useful in predicting their responses to future change. It remains challenging, however, to link simple morphological traits to species' complex ecological niches. Read the free Plain Language Summary for this article on the Journal blog.

13.
Commun Biol ; 6(1): 338, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37016087

ABSTRACT

Insects are declining, but the underlying drivers and differences in responses between species are still largely unclear. Despite the importance of forests, insect trends therein have received little attention. Using 10 years of standardized data (120,996 individuals; 1,805 species) from 140 sites in Germany, we show that declines occurred in most sites and species across trophic groups. In particular, declines (quantified as the correlation between year and the respective community response) were more consistent in sites with many non-native trees or a large amount of timber harvested before the onset of sampling. Correlations at the species level depended on species' life-history. Larger species, more abundant species, and species of higher trophic level declined most, while herbivores increased. This suggests potential shifts in food webs possibly affecting ecosystem functioning. A targeted management, including promoting more natural tree species composition and partially reduced harvesting, can contribute to mitigating declines.


Subject(s)
Ecosystem , Forests , Humans , Animals , Trees/physiology , Insecta , Food Chain
14.
Oecologia ; 201(3): 813-825, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36869183

ABSTRACT

Arthropods respond to vegetation in multiple ways since plants provide habitat and food resources and indicate local abiotic conditions. However, the relative importance of these factors for arthropod assemblages is less well understood. We aimed to disentangle the effects of plant species composition and environmental drivers on arthropod taxonomic composition and to assess which aspects of vegetation contribute to the relationships between plant and arthropod assemblages. In a multi-scale field study in Southern Germany, we sampled vascular plants and terrestrial arthropods in typical habitats of temperate landscapes. We compared independent and shared effects of vegetation and abiotic predictors on arthropod composition distinguishing between four large orders (Lepidoptera, Coleoptera, Hymenoptera, Diptera), and five functional groups (herbivores, pollinators, predators, parasitoids, detritivores). Across all investigated groups, plant species composition explained the major fraction of variation in arthropod composition, while land-cover composition was another important predictor. Moreover, the local habitat conditions depicted by the indicator values of the plant communities were more important for arthropod composition than trophic relationships between certain plant and arthropod species. Among trophic groups, predators showed the strongest response to plant species composition, while responses of herbivores and pollinators were stronger than those of parasitoids and detritivores. Our results highlight the relevance of plant community composition for terrestrial arthropod assemblages across multiple taxa and trophic levels and emphasize the value of plants as a proxy for characterizing habitat conditions that are hardly accessible to direct environmental measurements.


Subject(s)
Arthropods , Coleoptera , Animals , Arthropods/physiology , Biodiversity , Ecosystem , Herbivory , Plants
16.
Ecol Lett ; 26(3): 411-424, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36688259

ABSTRACT

In the long-term absence of disturbance, ecosystems often enter a decline or retrogressive phase which leads to reductions in primary productivity, plant biomass, nutrient cycling and foliar quality. However, the consequences of ecosystem retrogression for higher trophic levels such as herbivores and predators, are less clear. Using a post-fire forested island-chronosequence across which retrogression occurs, we provide evidence that nutrient availability strongly controls invertebrate herbivore biomass when predators are few, but that there is a switch from bottom-up to top-down control when predators are common. This trophic flip in herbivore control probably arises because invertebrate predators respond to alternative energy channels from the adjacent aquatic matrix, which were independent of terrestrial plant biomass. Our results suggest that effects of nutrient limitation resulting from ecosystem retrogression on trophic cascades are modified by nutrient-independent variation in predator abundance, and this calls for a more holistic approach to trophic ecology to better understand herbivore effects on plant communities.


Subject(s)
Ecosystem , Herbivory , Animals , Invertebrates , Biomass , Plants , Food Chain , Predatory Behavior
17.
Reg Environ Change ; 23(1): 29, 2023.
Article in English | MEDLINE | ID: mdl-36713958

ABSTRACT

Climate change severely affects mountain forests and their ecosystem services, e.g., by altering disturbance regimes. Increasing timber harvest (INC) via a close-to-nature forestry may offer a mitigation strategy to reduce disturbance predisposition. However, little is known about the efficiency of this strategy at the scale of forest enterprises and potential trade-offs with biodiversity and ecosystem services (BES). We applied a decision support system which accounts for disturbance predisposition and BES indicators to evaluate the effect of different harvest intensities and climate change scenarios on windthrow and bark beetle predisposition in a mountain forest enterprise in Switzerland. Simulations were carried out from 2010 to 2100 under historic climate and climate change scenarios (RCP4.5, RCP8.5). In terms of BES, biodiversity (structural and tree species diversity, deadwood amount) as well as timber production, recreation (visual attractiveness), carbon sequestration, and protection against gravitational hazards (rockfall, avalanche and landslides) were assessed. The INC strategy reduced disturbance predisposition to windthrow and bark beetles. However, the mitigation potential for bark beetle disturbance was relatively small (- 2.4%) compared to the opposite effect of climate change (+ 14% for RCP8.5). Besides, the INC strategy increased the share of broadleaved species and resulted in a synergy with recreation and timber production, and a trade-off with carbon sequestration and protection function. Our approach emphasized the disproportionally higher disturbance predisposition under the RCP8.5 climate change scenario, which may threaten currently unaffected mountain forests. Decision support systems accounting for climate change, disturbance predisposition, and BES can help coping with such complex planning situations. Supplementary Information: The online version contains supplementary material available at 10.1007/s10113-022-02015-w.

18.
Ecol Lett ; 26(2): 203-218, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36560926

ABSTRACT

Human impacts such as habitat loss, climate change and biological invasions are radically altering biodiversity, with greater effects projected into the future. Evidence suggests human impacts may differ substantially between terrestrial and freshwater ecosystems, but the reasons for these differences are poorly understood. We propose an integrative approach to explain these differences by linking impacts to four fundamental processes that structure communities: dispersal, speciation, species-level selection and ecological drift. Our goal is to provide process-based insights into why human impacts, and responses to impacts, may differ across ecosystem types using a mechanistic, eco-evolutionary comparative framework. To enable these insights, we review and synthesise (i) how the four processes influence diversity and dynamics in terrestrial versus freshwater communities, specifically whether the relative importance of each process differs among ecosystems, and (ii) the pathways by which human impacts can produce divergent responses across ecosystems, due to differences in the strength of processes among ecosystems we identify. Finally, we highlight research gaps and next steps, and discuss how this approach can provide new insights for conservation. By focusing on the processes that shape diversity in communities, we aim to mechanistically link human impacts to ongoing and future changes in ecosystems.


Subject(s)
Anthropogenic Effects , Ecosystem , Humans , Biodiversity , Fresh Water , Biological Evolution , Climate Change
19.
Nat Ecol Evol ; 7(2): 236-249, 2023 02.
Article in English | MEDLINE | ID: mdl-36376602

ABSTRACT

The impact of local biodiversity loss on ecosystem functioning is well established, but the role of larger-scale biodiversity dynamics in the delivery of ecosystem services remains poorly understood. Here we address this gap using a comprehensive dataset describing the supply of 16 cultural, regulating and provisioning ecosystem services in 150 European agricultural grassland plots, and detailed multi-scale data on land use and plant diversity. After controlling for land-use and abiotic factors, we show that both plot-level and surrounding plant diversity play an important role in the supply of cultural and aboveground regulating ecosystem services. In contrast, provisioning and belowground regulating ecosystem services are more strongly driven by field-level management and abiotic factors. Structural equation models revealed that surrounding plant diversity promotes ecosystem services both directly, probably by fostering the spill-over of ecosystem service providers from surrounding areas, and indirectly, by maintaining plot-level diversity. By influencing the ecosystem services that local stakeholders prioritized, biodiversity at different scales was also shown to positively influence a wide range of stakeholder groups. These results provide a comprehensive picture of which ecosystem services rely most strongly on biodiversity, and the respective scales of biodiversity that drive these services. This key information is required for the upscaling of biodiversity-ecosystem service relationships, and the informed management of biodiversity within agricultural landscapes.


Subject(s)
Biodiversity , Ecosystem , Agriculture/methods , Plants
20.
J Anim Ecol ; 92(5): 965-978, 2023 05.
Article in English | MEDLINE | ID: mdl-36377902

ABSTRACT

The patterns of successional change of decomposer communities is unique in that resource availability predictably decreases as decomposition proceeds. Saproxylic (i.e. deadwood-dependent) beetles are a highly diverse and functionally important decomposer group, and their community composition is affected by both deadwood characteristics and other environmental factors. Understanding how communities change with faunal succession through the decomposition process is important as this process influences terrestrial carbon dynamics. Here, we evaluate how beta-diversity of saproxylic beetle communities change with succession, as well as the effects of different major drivers of beta-diversity, such as deadwood tree species, spatial distance between locations, climate and forest structure. We studied spatial beta-diversity (i.e. dissimilarity of species composition between deadwood logs in the same year) of saproxylic beetle communities over 8 years of wood decomposition. Our study included 379 experimental deadwood logs comprising 13 different tree species in 30 forest stands in Germany. We hypothesized that the effects of tree species dissimilarity, measured by phylogenetic distance, and climate on beta-diversity decrease over time, while the effects of spatial distance between logs and forest structure increase. Observed beta-diversity of saproxylic beetle communities increased over time, whereas standardized effects sizes (SES; based on null models) of beta-diversity decreased indicating higher beta-diversity than expected during early years. Beta-diversity increased with increasing phylogenetic distance between tree species and spatial distance among regions, and to a lesser extent with spatial distance within regions and differences in climate and forest structure. Whereas effects of space, climate and forest structure were constant over time, the effect of phylogenetic distance decreased. Our results show that the strength of the different drivers of saproxylic beetle community beta-diversity changes along deadwood succession. Beta-diversity of early decay communities was strongly associated with differences among tree species. Although this effect decreased over time, beta-diversity remained high throughout succession. Possible explanations for this pattern include differences in decomposition rates and fungal communities between logs or the priority effect of early successional communities. Our results suggest that saproxylic beetle diversity can be enhanced by promoting forests with diverse tree communities and structures.


Subject(s)
Coleoptera , Wood , Animals , Wood/chemistry , Wood/microbiology , Phylogeny , Forests , Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...